错综复杂的世界经济环境为我国经济带来严峻的外部挑战,金融业的开放使得外部冲击更易传导至国内金融经济体系。在此背景下,研究外部冲击对宏观经济波动的影响,对增强我国经济韧性、推进金融开放具有重要现实意义。本文采用带有外生变量的面板条件同质性向量自回归(PCHVARX)模型,探究金融开放不同阶段新兴市场经济体宏观经济波动的内外部影响因素及机制。结果表明:外部冲击中全球需求冲击占主导,且金融开放度越高,影响越强。内部冲击是经济波动的主要原因,随着时间的推移及金融开放的推进,外部冲击相对重要性增加。异质性分析显示,正常时期金融开放有助于缓解国内金融市场风险,而在全球重大事件发生时,金融开放会强化内部金融风险,增强外部冲击影响;低贸易依赖度和高制度质量水平的经济体受外部冲击较小,金融开放发挥了重要调节作用。因此,为增强抵御外部冲击能力、提高宏观经济韧性,我国需要畅通国内大循环、降低外需依赖,在深化金融制度型开放的同时防控金融风险,为经济内循环创造稳定安全的金融环境。
Abstract
The global economic environment is highly complex, posing significant exogenous challenges to China's economic recovery. In particular, the comprehensive opening of the financial sector has heightened the risk of exogenous shocks being transmitted to the domestic financial system, threatening macroeconomic stability. Against this backdrop, studying the impact of exogenous shocks on macroeconomic fluctuations is crucial for enhancing China's economic resilience and advancing financial openness.
This study uses a Panel Conditional Homogeneity Vector Autoregression with Exogenous Variables(PCHVARX)model, focusing on emerging markets to examine how internal and exogenous factors influence macroeconomic fluctuations at different stages of financial openness. The findings reveal that global demand shocks are the most dominant among exogenous shocks, with their impact intensifying as financial openness increases. A comparison of internal and exogenous shocks indicates that internal shocks are the primary drivers of economic fluctuations in emerging markets. However, over time, as financial openness progresses, the relative importance of exogenous shocks increases, with a significant rise in cross-border risk transmission. Heterogeneity analysis shows that during normal periods, financial openness helps mitigate risk transmission caused by pressures in domestic financial markets. However, during major global events, financial openness can exacerbate internal financial risks and amplify the effects of exogenous shocks through global economic coordination. Additionally, factors such as institutional quality and trade structure contribute to significant differences in how internal and exogenous shocks affect various emerging markets. Economies with lower trade dependence and higher institutional quality are relatively less affected by exogenous shocks, with financial openness playing a critical moderating role.
To enhance resilience against exogenous shocks and improve macroeconomic stability, China must prioritize strengthening domestic circulation and reducing reliance on external demand. At the same time, China should deepen institutional financial openness while implementing robust financial risk controls to create a stable and secure financial environment conducive to internal economic circulation.
关键词
金融开放 /
宏观经济波动 /
金融市场压力指数 /
外部共同冲击
{{custom_keyword}} /
Key words
Financial Openness /
Macroeconomic Volatility /
Financial Stress Index /
Common Exogenous Shocks
{{custom_keyword}} /
中图分类号:
F831
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈雨露,罗煜. 金融开放与经济增长:一个述评[J]. 管理世界,2007(4):138-147
[2] 崔百胜,高崧耀. 二十国集团货币政策溢出效应的非对称性与异质性研究——基于PCHVAR模型[J]. 国际金融研究,2019(12):33-42
[3] 方意,和文佳,荆中博. 中国实体经济与金融市场的风险溢出研究[J]. 世界经济,2021(8):3-27
[4] 姜波克. 论开放经济下中央银行的冲销手段[J]. 金融研究,1999(5):1-4
[5] 靳玉英,周兵. 新兴市场国家金融风险传染性研究[J]. 国际金融研究,2013(5):49-62
[6] 李青原,章尹赛楠. 金融开放与资源配置效率——来自外资银行进入中国的证据[J]. 中国工业经济,2021(5):95-113
[7] 马勇,王芳. 金融开放、经济波动与金融波动[J]. 世界经济,2018(2):20-44
[8] 欧阳志刚,史焕平. 中国经济增长与通胀的随机冲击效应[J]. 经济研究,2010(7):68-78
[9] 彭红枫,朱怡哲. 资本账户开放、金融稳定与经济增长[J]. 国际金融研究,2019(2):3-12
[10] 孙工声. 中国宏观经济波动:内部调整还是外部冲击?[J]. 金融研究,2009(11):60-73
[11] 王国静,田国强. 金融冲击和中国经济波动[J]. 经济研究,2014(3):20-34
[12] 王培辉,康书生. 外部金融冲击、宏观经济波动与金融内在脆弱性——中国宏观金融风险驱动因素分解[J]. 国际金融研究,2018(4):12-21
[13] 王有鑫,王祎帆,杨翰方. 外部冲击类型与中国经济周期波动——兼论宏观审慎政策的有效性[J]. 国际金融研究,2021(3):14-26
[14] 杨娇辉,王伟,谭娜. 破解中国对外直接投资区位分布的“制度风险偏好”之谜[J]. 世界经济,2016(11):3-27
[15] 杨子晖. 金融市场与宏观经济的风险传染关系——基于混合频率的实证研究[J]. 中国社会科学,2020(12):160-180+204
[16] Barrot L D,Calderón C,& Servén L. Openness,Specialization,and the External Vulnerability of Developing Countries[J]. Journal of Development Economics,2018,134,310-328
[17] Calomiris C W,Mamaysky H.How News and Its Context Drive Risk and Returns around the World[J]. Journal of Financial Economics,2019,133(2):299-336
[18] Forbes K J,Warnock F E.Capital Flow Waves or Ripples?Extreme Capital Flow Movements since the Crisis[J]. Journal of International Money and Finance,2021,116:102394
[19] Georgiadis G.Towards an Explanation of Cross-Country Asymmetries in Monetary Transmission[J]. Journal of Macroeconomics,2014,39:66-84
[20] Illing M,Liu Y.Measuring Financial Stress in a Developed Country:An Application to Canada[J]. Journal of Financial Stability,2006,2(3):243-265
[21] Larrain M,Stumpner S.Capital Account Liberalization and Aggregate Productivity:The Role of Firm Capital Allocation[J]. The Journal of Finance,2017,72(4):1825-1858
[22] Levine R.International Financial Liberalization and Economic Growth[J]. Review of International Economics,2001,9(4):688-702
[23] Lutkepohl H.General-to-Specific or Specific-to-General Modelling?An Opinion on Current Econometric Terminology[J]. Journal of Econometrics,2007,136(1):319-324
[24] Ma R,Li F,Du M.How does Environmental Regulation and Didigital Finance Affect Green Technological Innovation:Evidence from China[J]. Frontiers in Environmental Science,2022,10:928320
[25] Maćkowiak B. External Shocks,US Monetary Policy and Macroeconomic Fluctuations in Emerging Markets[J]. Journal of Monetary Economics,2007,54(8):2512-2520
[26] Peersman G.What Caused the Early Millennium Slowdown?Evidence Based on Vector Autoregressions[J]. Journal of Applied Econometrics,2005,20(2):185-207
[27] Quinn D P,Toyoda A M.Does Capital Account Liberalization Lead to Growth?[J]. Review of Financial Studies,2008,21(3):1403-1449
[28] Rodríguez G,Vassallo R,Castillo P.Effects of External Shocks on Macroeconomic Fluctuations in Pacific Alliance Countries[J]. Economic Modelling,2023,124:106302
[29] Sims C A,Zha T.Error Bands for Impulse Responses[J]. Econometrica,1999,67(5):1113-1155
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
本文获教育部规划基金项目“绿色转型下‘绿天鹅’风险传染网络效应研究:实证识别与政策协同”(24YJA790013)、国家自然科学基金项目“时间维度的宏观审慎政策:传导机制、政策规则与政策协调”(72073104)、国家社会科学基金重点项目“基于多模态大数据和人工智能的金融风险防控研究”(24AZD020)资助
{{custom_fund}}