新发展格局下,坚持防范输入性金融风险和化解内生性金融风险并重是维护我国金融稳定的关键,准确识别并测度两类风险是实现这一目标的重要前提。本文采用尾部溢出指数分解法测度了中国金融市场的内生性金融风险和输入性金融风险水平,厘清了不同经济金融环境下中国金融市场的风险来源结构。研究发现:第一,中国金融市场风险对极端事件十分敏感,当重大金融冲击、贸易摩擦事件和公共卫生事件发生时,市场风险明显上升。第二,从风险来源结构来看,输入性金融风险占比大于内生性金融风险,且正常状态下中国金融市场风险变化主要由前者主导,而极端状态下中国金融市场风险变化主要由后者主导。第三,正常情形下,相较于国际资本市场,国际外汇市场和商品市场对中国金融市场的输入性金融风险更加显著,但在极端情形下,国际资本市场的输入性金融风险显著提高。
Abstract
Against the backdrop of intensifying uncertainty in the international financial market and increasing pressure in the domestic financial market, in order to prevent and resolve financial risks and maintain a stable and healthy economic environment, it is necessary to adhere to the equal importance of preventing imported financial risks and resolving endogenous financial risks, and to focus on preventing and resolving major risks.
This paper selects the stock market, bond market, foreign exchange market and commodity market as the representative sub-markets of the financial market, and adopts the tail spillover index decomposition method to measure the endogenous and imported financial risks of China's financial market, and clarifies the structure of the sources of risks in China's financial market.
The main conclusions of this paper are as follows. Firstly, China's financial market risk is very sensitive to extreme events, and rises significantly when major financial shocks, trade friction events, and public health events occur. Secondly, the proportion of imported financial risk is greater than that of endogenous financial risk, the change of the risk of China's financial market is mainly driven by imported financial risk in the normal state, and by endogenous financial risk in extreme states. Thirdly, under normal circumstances, the input financial risk of international foreign exchange market and commodity market to China's financial market is more significant than that of international stock market and bond market, but under extreme circumstances, the input financial risk of international stock market and bond market is significantly higher.
Based on the above findings, this paper puts forward the following policy recommendations. On one hand, the regulatory authorities should make targeted judgements on the main sources of risks in China's financial markets under different financial states, especially the sources of imported financial risks, and take necessary measures to block the channels of external risk input. On the other hand, the regulators should fully consider the cross-border information spillover effect between and among different types of financial markets, pay attention to the cross-risks between China's financial markets and international financial markets, and adjust risk monitoring and control in due course.
关键词
内生性金融风险 /
输入性金融风险 /
金融市场 /
尾部溢出指数分解
{{custom_keyword}} /
Key words
Endogenous Financial Risk /
Imported Financial Risk /
Financial Markets /
Tail Spillover Index Decomposition
{{custom_keyword}} /
中图分类号:
F831
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 崔金鑫,邹辉文. 时频视角下国际股市间高阶矩风险溢出效应研究[J]. 国际金融研究,2020(6):75-85
[2] 方意,邵稚权. 重大冲击下我国输入性金融风险测度研究[J]. 经济科学,2022(2):13-30
[3] 方意,王晏如,黄丽灵,和文佳. 宏观审慎与货币政策双支柱框架研究——基于系统性风险视角[J]. 金融研究,2019(12):106-124
[4] 费兆奇,刘康. 金融开放条件下国债市场的波动溢出和风险定价研究[J]. 经济研究,2020(9):25-41
[5] 宫晓莉,熊熊. 波动溢出网络视角的金融风险传染研究[J]. 金融研究,2020(5):39-58
[6] 胡秋灵,马丽. 我国股票市场和债券市场波动溢出效应分析[J]. 金融研究,2011(10):198-206
[7] 李政,李丽雯,刘淇. 我国行业间尾部风险溢出的测度及时空驱动因素研究[J]. 统计研究,2024(2):64-76
[8] 李政,石晴,卜林. 基于分位数关联的政策连续性跨国溢出研究[J]. 金融研究,2022(8):94-112
[9] 史永东,丁伟,袁绍锋. 市场互联、风险溢出与金融稳定——基于股票市场与债券市场溢出效应分析的视角[J]. 金融研究,2013(3):170-180
[10] 谭小芬,张凯,耿亚莹. 全球经济政策不确定性对新兴经济体资本流动的影响[J]. 财贸经济,2018(3):35-49
[11] 王聪,焦瑾璞. 国内外黄金市场价格间的联动关系稳定吗?——基于外部冲击视角的分析[J]. 金融研究,2019(11):75-93
[12] 闻岳春,王婕,程天笑. 国内股市与国际股市、大宗商品市场的溢出效应研究[J].国际金融研究,2015(8):31-43
[13] 杨翰方,王祎帆,王有鑫. 中国输入性金融风险:测算、影响因素与来源[J]. 数量经济技术经济研究,2020(7):113-133
[14] 杨子晖,李东承,王姝黛. 合成网络新视角下的输入性金融风险研究[J]. 中国工业经济,2022(3):38-56
[15] 杨子晖,张平淼,陈雨恬. 风险共振还是风险分散?——基于尾部事件下风险结构的关联研究[J]. 经济学(季刊),2021(6):2127-2152
[16] 张明,肖立晟. 国际资本流动的驱动因素:新兴市场与发达经济体的比较[J]. 世界经济,2014(8):151-172
[17] Ando T,Greenwood-Nimmo M,Shin Y.Quantile Connectedness:Modeling Tail Behavior in the Topology of Financial Networks[J]. Management Science,2022,68(4):2401-2431
[18] Chen L,Wen F,Li W,et al.Extreme Risk Spillover of the Oil,Exchange Rate to Chinese Stock Market:Evidence from Implied Volatility Indexes[J]. Energy Economics,2022,107:105857
[19] Diebold F,Yilmaz K.On the Network Topology of Variance Decompositions:Measuring the Connectedness of Financial Firms[J]. Journal of Econometrics,2014,182(1):119-134
[20] Fan H,Gou Q,Peng Y,et al.Spillover Effects of Capital Controls on Capital Flows and Financial Risk Contagion[J]. Journal of International Money and Finance,2020,105:102189
[21] Goyenko R Y,Ukhov A D.Stock and Bond Market Liquidity:A Long-Run Empirical Analysis[J]. Journal of Financial and Quantitative Analysis,2009,44(1):189-212
[22] Liu Q,An Y.Information Transmission in Informationally Linked Markets:Evidence from US and Chinese Commodity Futures Markets[J]. Journal of International Money and Finance,2011,30(5):778-795
[23] Wen F,Cao J,Liu Z,et al.Dynamic Volatility Spillovers and Investment Strategies between the Chinese Stock Market and Commodity Markets[J]. International Review of Financial Analysis,2021,76:101772
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
*本文获国家社会科学基金后期资助项目“金融科技、银行信贷资源配置与实体经济高质量发展研究”(23FJYB033)、教育部人文社会科学研究青年基金项目“经济政策不确定性、混频高维关联与金融市场尾部风险传染效应研究”(23YJC790038)、国家自然科学基金青年项目“系统性风险防范视角下我国货币政策与宏观审慎政策协调机制研究”(71903142)资助
{{custom_fund}}