基于时变Copula 模型的系统流动性风险研究

高波,任若恩

国际金融研究 ›› 2015 ›› Issue (12) : 85-93.

PDF(784 KB)
PDF(784 KB)
国际金融研究 ›› 2015 ›› Issue (12) : 85-93.
金融市场

基于时变Copula 模型的系统流动性风险研究

  • 高波,任若恩
作者信息 +
文章历史 +

摘要

系统流动性风险指在短期债务展期或获得新的短期债务时, 多个金融机构同时面临困难, 造成货币市场和资本市场普遍混乱的风险。它是一类具体的系统性风险, 直接源于金融市场的资金供给不足。本文引入时变Copula 模型研究系统流动性风险, 刻画不同市场的流动性风险的动态相关关系, 并且运用边际预期损失比较它们对系统流动性风险的贡献。实证分析2005-2014 年的中国货币市场, 我们发现时变t Copula 模型能够更加准确地描述流动性风险的动态相关结构, 并且回购市场对系统流动性风险的贡献高于拆借市场。因此, 当系统流动性风险增加时, 中央银行应该优先增加在回购市场的资金投放。

Abstract

Systemic liquidity risk refers to the risk that many financial institutions face simultaneous difficulties, when theyroll over short-term debts and obtin new short-term funds, which results in the widespread dislocations of money and capital markets. It is a kind of concrete sy(a) stemic risk, and directly origins from the insufficient funds provided to the financial market. The paper introduces time-varying copula model to study the systemic liquidity risk, and analyzes the dynamic correlation of the liquidity risk in different markets, and uses marginal expected shortfall to compare their contribution to the systemic liquidityrisk. Through empirically analyzing China's money market from 2005 to 2014, we find time-varying t copula could describe the dynamic correlation structure of liquidity risk more precisely than other copulas, and the repo market contributes to systemic liquidity risk more than the interbank offer market. Therefore, when systemic liquidity risk increases, the central bank should provide more funds in prior in the repo market.

关键词

系统流动性风险 / 融资流动性 / 时变Copula 模型 / GARCH-GPD 模型 / 风险价值

Key words

Systemic Liquidity Risk / Funding Liquidity / Time-varying Copula Model / GARCH-GPD Model / Value at risk

引用本文

导出引用
高波,任若恩. 基于时变Copula 模型的系统流动性风险研究[J]. 国际金融研究, 2015(12): 85-93
中图分类号: F831   

参考文献

[1] 高岳, 朱宪辰. 基于极值理论的同业拆借利率度量[J]. 数量经济技术经济研究, 2009 (8):135-147
[2] 黄聪, 贾彦东. 全球网络视角下的宏观审慎管理---基于银行间支付结算数据的实证分析[J]. 金融研究, 2010 (4):1-14
[3] 江红莉, 何建敏, 庄亚明. 基于时变Copula 的房地产业与银行业尾部动态相关性研究[J]. 管理工程学报, 2013, 27 (3):53-59
[4] 李秀敏, 史道济. 金融市场组合风险的相关性研究[J]. 系统工程理论与实践, 2007 (2):112-117
[5] 王永巧, 刘诗文. 基于时变Copula 的金融开放与风险传染[J]. 系统工程理论与实践, 2011, 31 (4):778-784
[6] 周孝华, 张保帅, 董耀武. 基于Copula-SV-GPD 模型的投资组合风险度量[J]. 管理科学学报, 2012, 15 (12):70-78
[7] Acharya V. V., et al. Measuring Systemic Risk[R]. New York University, Working Waper, 2010
[8] Brunetti C., Filippo M., Harris J.H. Effects of Central Bank Intervention on the Interbank Market during the Sub-prime Crisis[J]. Review of Financial Studies, 2011, 24 (6):2053-2083
[9] Brunnermeier M. K., Pedersen L. H. Market Liquidity and Funding Liquidity [J]. Review of Financial Studies, 2009, 22 (6):2201-2238
[10] Coles S. An Introduction to Statistical Modeling of Extreme Values[M]. London:Springer, 2001
[11] Diamond D.W., Rajan R. G. Illiquid Banks, Financial Stability, and Interest Rate Policy [J]. Journal of Political Economy, 2012, 120 (3):552-591
[12] Drehmann M., Nikolaou K. Funding Liquidity Risk:Definition and Measurement[J]. Journal of Banking & Finance, 2013, 37 (7):2173-2182
[13] Freixas X., Martin A., Skeie D. Bank Liquidity, Interbank Markets, and Monetary Policy[J]. Review of Financial Studies, 2011, 24 (8):2656-2692
[14] Genest C., Remillard B., Beaudoin D. Goodness-of-fit Tests for Copulas:A Review and a Power Study[J]. Insurance:Mathematics and Economics, 2009 (44):199-213
[15] Gorton B. G. Metrick A. Securitized Banking and the Run on the Repo[J]. Journal of Financial Economics, 2012, 104 (3):425-451
[16] IMF. Global Financial Stability Report:Durable Financial Stability[M]. New York:IMF Press, 2011
[17] Krehbiel T., Adkins L. C. Extreme Daily Changes in U.S. Dollar London Interbank Offer Rates[J]. International Review of Economics and Finance, 2008 (17):397-411
[18] Longin F., Solnik B. Extreme Correlation ofInternationalEquity Markets[J]. JournalofFinance, 2001, 56 (2):649-676
[19]M佗rquez-Diez-Canedo J., Mart侏nez-Jaramillo S. Systemic Risk:Stress Testing the Banking System[C]. Amsterdam:International Monetary Fund & De Nederlandsche Bank, 2007
[20] Patton A. J. Copula Methods for Forecasting Multivariate Time Series[M]. Handbook of Economic Forecasting, 2013, 2:899-960
[21] Patton A. J. Modelling Asymmetric Exchange Rate Dependence[J]. International Economic Review, 2006, 47 (2):527-556
[22] Poon S., Rockinger M., Tawn J. Extreme Value Dependence in Financial Markets:Diagnostics, Models, and Financial Implications[J]. Review of Financial Studies, 2004, 17 (2):581-610
[23] Stein J. C. Monetary Policy as Financial Stability Regulation[J]. Quarterly Journal of Economics, 2012, 127 (1):57-95

基金

本文获国家自然科学基金(71171009,71031001)、北方工业大学优秀青年教师培养计划(14085)、北方工业大学2014科研启动费资助。
PDF(784 KB)

133

Accesses

0

Citation

Detail

段落导航
相关文章

/